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Theta-Point Exponent for Polymer Chain 
in Random Media 
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Using field-theoretic arguments for self-avoiding walks on dilute lattices with 
site occupation concentration p, we show that the 0-point size exponent 0p ~ of 
polymer chains remains unchanged for small disorder concentration (p > Pc)- At 
the percolation threshold p = Pc, using a Flory-type approximation, we conjec- 
ture that 0p~ 5/(dB+7), where de is the percolation backbone dimension. It 
shows that the upper critical dimensionality for the 0-point transition at p = Pc 
shifts to a dimension d~. > 3. We also propose that the 0-point varies practically 
linearly with p for 1 > p/> Pc. 

KEY WORDS: 0-point; self-avoiding walks; percolation; fractals; renor- 
malization group; Flory approximation. 

1. I N T R O D U C T I O N  

The statistics of self-avoiding walks (SAW) on lattices with quenched 
random impurities is presently being investigated with keen interest/1 7) 
Apart from some extensions to correlated disorder, (6) or to more elaborate 
(log) configurational averagings, ~v) most of these studies investigated the 
end-to-end size exponent of the SAWs on percolation clusters (see, e.g, 
ref. 8). In the context of polymers in, say, a porous medium (a realization 
of a quenched random medium), such walk statistics corresponds to the 
infinite-temperature situation; or, more specifically, to a temperature T 
above the polymer-solvent theta point 0 (appropriate for the porous 
media), below which a collapse transition takes place. ~176 The essential 
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finding, so far, for this swollen chain phase ( T > 0 ) ,  has been that the 
polymer size exponent 0 saw does not change from the pure SAW exponent 
3SAW for any amount of disorder concentration c = 1 - p below the per- 0 

colation threshold value Cc = 1 - p c .  (Hq3) At p =Pc ,  the exponent crosses 
over to a new value 3 sAw (>D0SAW), determined by the excluded volume 

Pc 

effect on the percolation fractal. ~ is.4.s) The upper critical dimensionality 
also shifts to d~= 6 (0sAw= 1/2 for d>~ 6 (2'4)) These theoretical estimates 

"--Pc 

for the 0 saw value are, however, considerably higher than the Monte Carlo 
Pc 

estimates, (3a4) except for a recent enumeration result on percolation 
clusters which agrees with the analytical results. (4) 

As mentioned before, all these studies on SAW statistics on random 
lattices correspond to the swollen polymer chain phase at T >  O(p), where 
O(p) denotes the polymer solvent 0-point appropriate to the porous 
medium. In this paper, we consider the behavior of the polymer chain at 
and below the theta point. 

2. SIZE E X P O N E N T  AT THE T H E T A  POINT  FOR P>Pc 

For studying SAW statistics on site diluted lattices, we start with the 
standard n-vector magnetic model with dilution 

H =  - ~  JuSi" Sj, Jo = JoGcj, c i = O, 1 
(ij) 

and write the effective continuous spin Hamiltonian as (12) 

(1) 

H =  Z ~ ( r + q  2) S~._Sq 
q c~ 

q l  q2 q3 q4 a ,  fl 

• S ~ q, "SqzSq~" S~fi(ql + q2 + q3 + q4) (2) 

Here S is the n-component spin vector, ~ = 1, 2,..., m is the replica index 
coming from averaging over the quenched randomness, u is generally a 
measure of the two-body (repulsive) interaction, and v = J Z c ( 1 -  c). To get 
the polymer (SAW) statistics from this n-vector model, we have to take the 
n ~ 0 limit, (9) and for the quenched configurational averaging, we need the 
m ~ 0 limit. However, as shown by Kim, ~ because of the simultaneous 
appearance of n and m, both going to zero, the replica coupling effectively 
disappears in this limit. The sole effect of the disorder is to reduce the two- 
body interaction term to ue~r=u-v .  Writing uefr= [ T - O ( p ) ] / O ( p ) ,  one 
therefore finds that the critical behavior is governed by the excluded- 
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volume fixed point of pure SAWs for T >  0(p), giving _p(~SAW ~--- ~0'(ISAW for 
p > pc. (12) However, as T is reduced, uerf will cross the zero value, giving a 
tricritical behavior at the theta point. (9'16) The critical exponents for the 
theta point (since uefr= 0, the S 6 term is necessary for stability) and for the 
collapse phase (Uefr< 0) should be identical to those of the polymer chain 
in pure solvent. 

It is therefore concluded, thanks to the effective disappearance of the 
replica coupling in the n-+ 0 limit, that the size exponent for the theta 
point and the collapse phase remain the same as in pure solvents (~6'17~ for 
any small amount of disorder: 

_ 3  c - -1  and 0 3o 0 = l  2 e 2 
3; -  o- d 3r=  +515 + 0( 3) (3) 

e = 3 - d  

for p > Pc. This, in fact, was observed earlier, using similar field-theoretic 
techniques.(18'19) 

3. SIZE E X P O N E N T  AT T H E  T H E T A  P O I N T  FOR P = P c  

At p = Pc, the collapsed structure of the polymer chain at T <  O(p~) 
should have the size exponent 3 c = l/de, since the dangling ends of the 

Pc 

percolation cluster cannot contribute to the statistics of long polymers, and 
the collapsed dimension should be identical to that of the percolation back- 
bone. In order to estimate the 0-point size exponent Op~ at T =  O(p~.), we 
use an approximate Flory-like formula, since the small-disorder expansion 
of the Hamiltonian in Eq. (2) is not adequate. 

In the conventional Flory approximation, the theta-point size expo- 
nent is given by 3~ 1), where D is an appropriate dimension 
(D = d for p > pc). (1~ For  collapse in two dimensions (D = d =  2), this 
formula overestimates the exponent, which is known exactly to be 4/7. (17) 
However, for D = d = 3, this gives 1/2, which is indeed correct for the upper 
critical dimension d =  3. (9) In order to have a better estimate of this expo- 
nent, we use the correspondence, in two dimensions, between the percola- 
tion hull and the polymer chain conformation at the theta point (2~ 

(3~ - ~ = 1 + ( 3  p) ~ (4) 

where 3 p is the percolation correlation length exponent. From the known 
values of 3 ~ and 3P, we know that this relation is correct only in two 
dimensions, even though the error in other dimensions is quite small. 
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Ignoring this small correction, if we use the Flory value OP= 5/(D + 2) for 
the percolation exponent, (21) we get 

0 o = 5/(D + 7) (5) 

This gives a reasonably good value for the theta-point size exponent for 
pure lattices (p > Pc): 0o o = 5/9 ~ 0.56, compared to 4/7 ~- 0.57 in D = d = 2, 
and 00~ for D = d = 3 ,  which is also correct for the upper critical 
dimension d, = 3. The error in using Eq. (4) in dimensions higher than two 
is somehow canceled by the error in the Flory formula for the percolation 
exponent. This is probably another example of the strange cancellation in 
the Flory approximations. 

We thus conjecture that at p = Pc, the polymer chain size exponent at 
the theta point [ T =  0(pc)] will be given by 

O~ = 5~(de + 7) (6) 

where de is the percolation backbone dimension (de -~ 1.61 and 1.75 in two 
and three dimensions, respectively(8)). In two dimensions, we therefore get 
0 ~ = 0.58 at p = Pc, compared to 0.57 for p > Pc, and expect this estimate 

Pc 

to be particularly accurate, since the correspondence with percolation hull 
in Eq. (4) may still remain exact on d =  2 percolation clusters. In three 
dimensions,.0p~ 0.57. It may be noted that the upper critical dimension is 
no longer 3, but has shifted to dc > 3, for which the backbone dimension 
is 3. This corresponds to a Euclidean dimension d-~ 4. (8) 

4. T H E T A  P O I N T  IN R A N D O M  M E D I U M  

Up to now our analysis is based on the assumption of the existence of 
the theta point [ 0 ( p ) >  0] on the percolation cluster. To be concrete, we 
consider the problem of an interacting self-avoiding walk on random 
lattices, where there is an attractive energy for each pair of nonbonded 
nearest neighbors. A simple mean field estimate for the transition tem- 
perature for a pure lattice would be O0=z - 1-/~0,  where z is the coor- 
dination number of the lattice and #0 is the connectivity constant for the 
SAW. This comes from an estimate (22) for the average number of nearest 
neighbors of a site on a SAW. For  dilute lattices the modification of this 
formula would be O ( p ) = p ( z - 1 ) - p ( p ) .  It is, however, observed (23A3'4) 
that to a sufficiently good accuracy # ( p ) =  P#o, so that O(p)= pO0. Even 
though the estimate for the theta point for pure lattices is not good com- 
pared to the well-known estimates, (24) we expect the p dependence of O(p) 
[ through #(p) ]  to be the right one. This suggests a nonzero value for the 
theta point even for p = Pc, given by O(pc)= pcO0. This should be con- 
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trasted with the Ising model problem, for which there is no (finite-tem- 
perature) transition on a percolating cluster; a Peierls-type domain wall 
argument there generally shows the absence of a transition. Such is not the 
case for the collapse transition because of the nonexistence of a finite 
number of ground states. 

5. S U M M A R Y  A N D  D I S C U S S I O N  

We now summarize the results. 

1. The theta-point behavior on dilute lattices (1 > p > Pc) is similar 
to the pure (p = 1) case. 

2. At p=p~., the theta-point behavior changes, giving ~p0= 
5/(riB+7), and for the collpased phase Oc= l id , .  The upper critical 

Pc 

dimension for the theta transition increases to d c > 3(d c ~-4). This change 
in de should be observable in real experiments such as those on polymers 
in porous medium. 

3. The theta-point decreases almost linearly with p in the range 
1 > p >~ Pc. This, we believe, can also be checked in real experiments in 
porous medium and in computer simulations, even above the percolation 
threshold. 
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